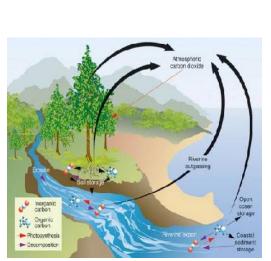
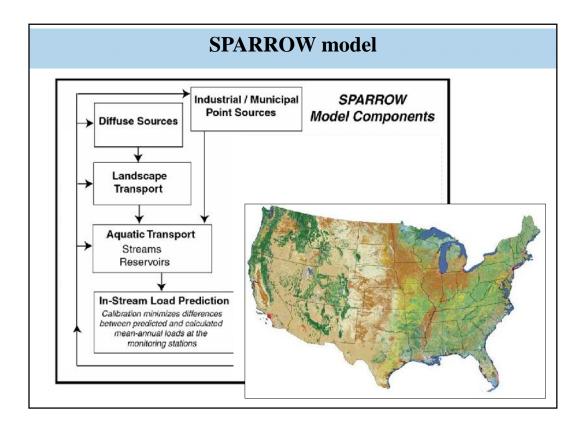


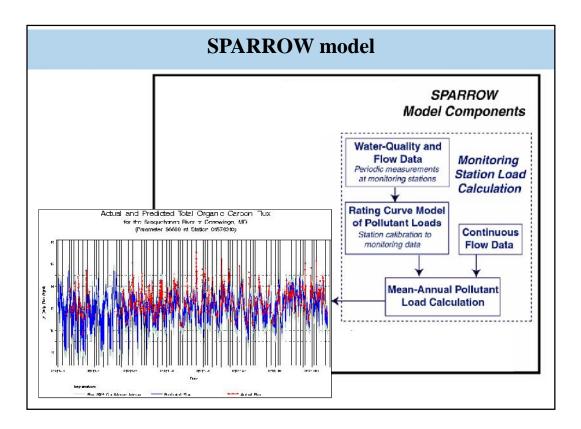
Developing collaborations on the lateral fluxes Beth Boyer, Penn State Richard Alexander & Richard Smith, USGS • Hanqin Tian, Auburn ٠ • James Bauer, Ohio State Tom Bianchi, TAMU • Paula Coble, USF ٠ Steve Howden, USM • Emilio Mayora, Washington ٠ Sybil Seitzinger, IGBP Others to connect with - Ted Stets, Rob Striegl, and David Butman USGS); You? More.

Questions

- How much carbon is transported in surface waters; and how much is delivered to coastal waters?
- What are the primary sources of organic carbon in surface waters, throughout the river network?

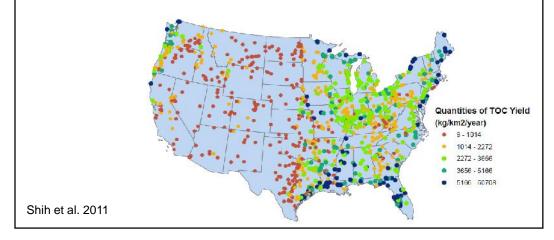


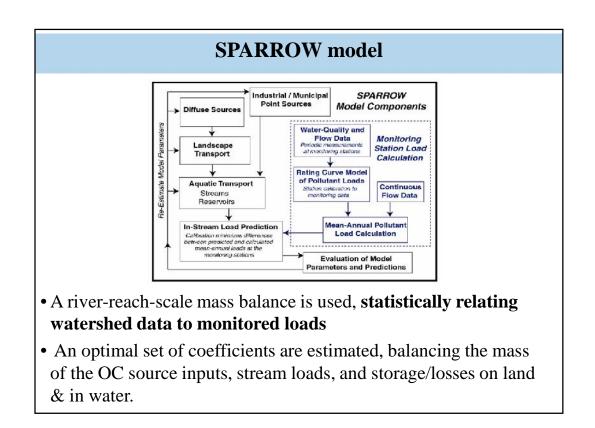

Figure by T. Brown, from https://www.llnl.gov/str/March06/Brown.html


SPARROW model

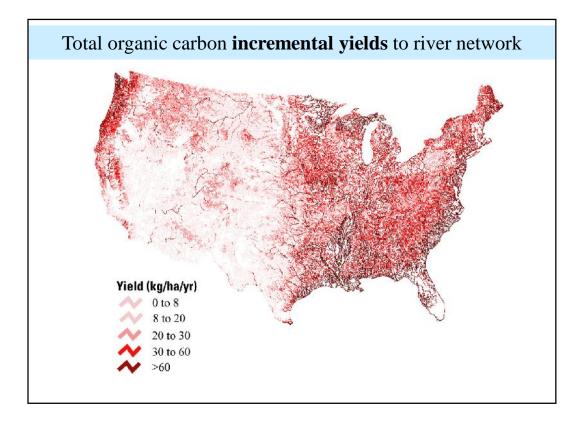
<u>Spatially Referenced Regression on Watershed attributes</u> (SPARROW) modeling approach

- estimate **loads** and **concentrations** of organic carbon in surface waters.
- Predict **source shares** generating hypotheses about where the organic carbon delivered to rivers & streams comes from.

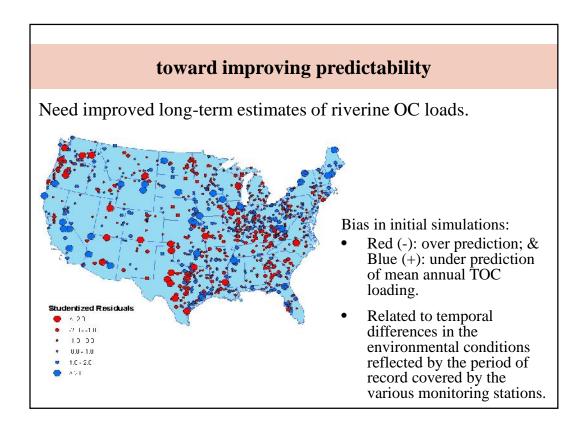


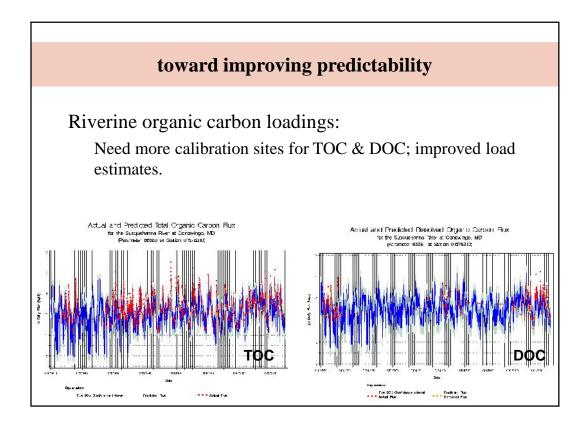


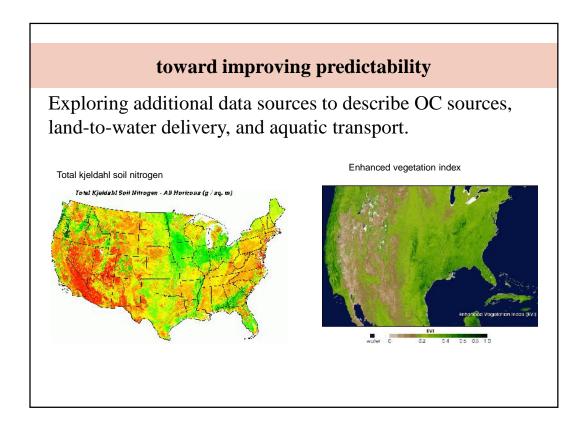
Initial OC simulations w/ SPARROW


Mean annual riverine OC loads estimated from long term monitoring data in an intial model (Shih et al. 2011).

- Total organic carbon data retrieved for 1970-2008.
- 1125 sites (of ~5000 sites w/ TOC data) met criteria for use.

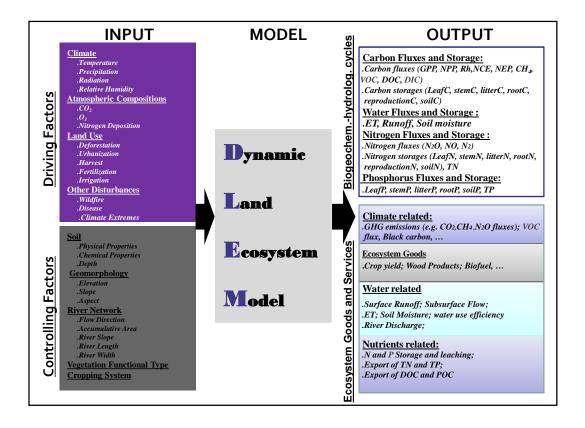

Parameter	Units	Estimate	Std Err	p value	
Land Area source proxies					
Agricultural Land	kg km ⁻² yr ⁻¹	1454	167	0.000	
Forest - deciduous	kg km ⁻² yr ⁻¹	1061	191	0.002	Results:
Forest - evergreen	kg km ⁻² yr ⁻¹	1378	167	0.000	
Forest - mixed	kg km ⁻² yr ⁻¹	2568	627	0.001	Model includes
Urban land	kg km ⁻² yr ⁻¹	4777	778	0.000	statistically-
Wetlands	$kg km^{-2} yr^{-1}$	25008	2529	0.000	significant
Land-to-water delivery					C
Permeability rate	log (cm hr ⁻¹)	-0.1407	0.0368	0.000	Sources, Land-
Annual precipitation	cm/yr	0.0047	0.0006	0.000	to-water
Tile drained area %	% area	0.0116	0.0031	0.001	
Drainage density	log (km ⁻¹)	0.4407	0.0545	0.000	delivery
Land slope		-0.0023	0.0040	0.001	factors, and In-
In-stream fate					stream factors
Production, photosynthesis	dimensionless	1.1	0.13	0.000	sucalli factors
Loss, mass transfer	per day	0.029	0.003	0.000	
Log RMSE		0.54			
No. Obs.		1125			
Adjusted R-squared		0.928			
Yield R-squared		0.77			Shih et al. 2

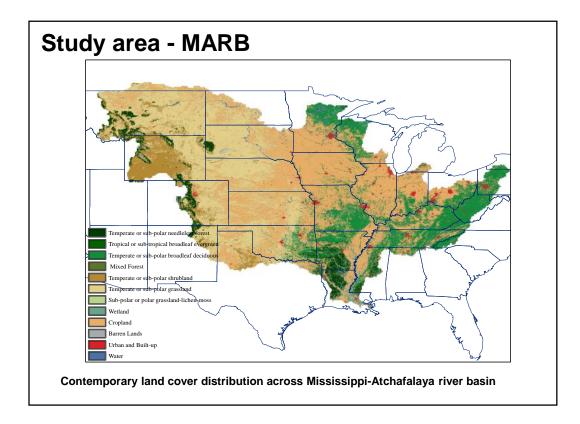


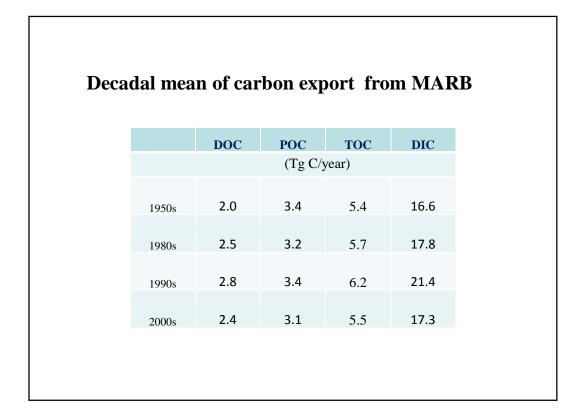

TOC loadings to coastal areas from 7 water regions					
Pacific Nontrivest Allississippi - Atchatalaya - Red	ani nec				
Texas - Gulf - Ric Grande	Guit Region	Drainage area (km²) ¹	Delivered yield (kg ha ^{.1} yr ^{.1})		
	North Atlantic	446,500	34		
	SouthAtlantic- Gulf	730,000	59		
	MissAtchRed ⁴	3,248,700	32		
Generates estimates	Texas-Gulf	925,400	11		
of mean annual OC	Pacific Northwest	713,700	17		
concentrations &	California	234,200	15		
loads along the	Great Lakes	313,100	38		
river network		1	h no		
			Shih et al. 20		

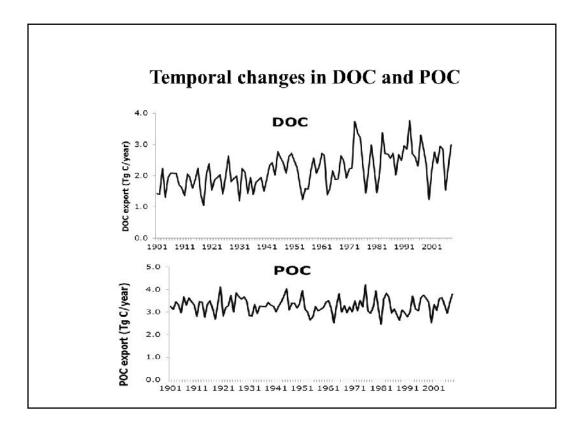
ТОС	source sha from 7	`	· ·		al area	IS	
Carlynna Carlynna Toxes Gulf- Ro Grandn	Nagati Angente Vie Total organic carbon	source sha	ares (%) deliv	vered to co	asts from ma	ior regional	watersheds
	Ŭ			Terrestrial			
Generates testable	Region	In- Stream	Terrestri al	Ag	Forest	Urban	Wetland
hypotheses for source shares along	North Atlantic	22	78	7	29	10	32
the river network;	SouthAtlantic- Gulf	21	79	5	13	3	58
comparing to other	MissAtchRed	54	45	14	7	2	22
data such as	Texas-Gulf	36	65	14	12	5	34
riverine C isotopes and EEMs	Pacific Northwest	48	53	6	39	3	5
	California	37	64	8	39	10	7
	Great Lakes	10	90	15	11	4	60
						Shih	et al. 2011

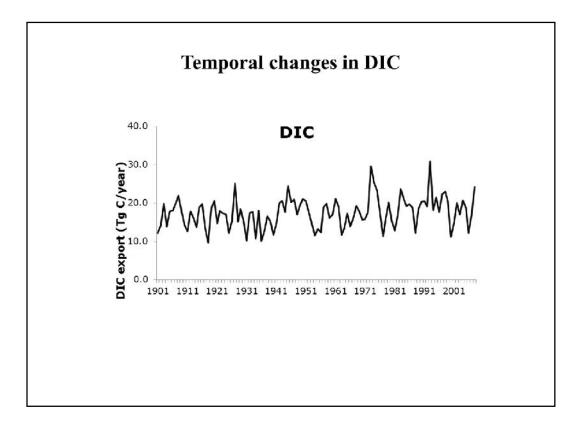
Relation betw	een TOC and	DOC in w	ater r	region	S
Pacific Northwest alifomia Mississippi - Atchafalaya - Red	Nonfi Atlantic		Mean Co	ncentratio	an (ma/l)
Texas - Gulf - South Atlan	tic-Gulf Name	Number of Sites		TOC	Ratio
Rio Grande	Northeast	34	13.65	14.24	0.90
V V	Mid-Atlantic	131	4.58	5.63	0.83
	Southeast	142	9.86	11.15	0.86
Can be used from	Great Lakes	66	8.62	9.75	0.89
	Ohio	64	3.49	4.59	0.79
appropriate regions	Tennessee	27	3.24	4.29	0.80
to scale TOC to	Upper Miss.	52	6.60	8.80	0.76
DOC/POC	Lower Miss.	30	6.70	8.71	0.78
DOC/POC	Souris-Red-Rainy	23	13.41	14.51	0.92
estimates	Missouri	100	7.88	10.52	0.79
	Red-White	44	5.53	7.48	0.80
	Texas Gulf	34	6.70	8.34	0.83
	Rio Grande	8	5.33	9.52	0.74
	Upper Colorado	14	5.33	8.60	0.77
	Lower Colorado	16	6.84	17.31	0.73
	Great Basin	16	5.56	6.35	0.85
	Pacific Northwest	37	2.89	3.41	0.85
	California	22	5.87	7.08	0.85

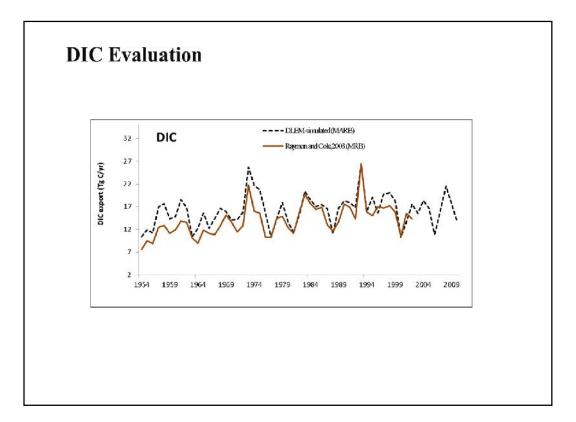





Riverine Fluxes of Caron, Nitrogen, and Water from the Mississippi-Atchafalaya River Basin (MARB) to the Northern Gulf of Mexico as simulated by DLEM: Results from the NASA IDS Project


Hanqin Tian International Center for Climate and Global Change Research Auburn University


Jan. 04th, 2013



	· · · · p · · · ·	isons of terr	cottini e i	nputs
Chemical	Region	Annual Flux (Tg y ⁻¹)	Period	References
TOC	MARB	4.61	Mean	Smith et al., 2005
	MARB	5.32	Mean	Ludwig et al., 1996
	MARB	3.9	Mean	Green et al., 2006
	MARB	5.7±0.8	1980-1996	DLEM2.0
DOC	MARB	3.08	Mean	Smith et al., 2005
	MARB	4.28	Mean	Ludwig et al., 1996
	MARB	2.6	Mean	Harrison et al., 2005
	MARB	2.61±0.5	1980-1996	DLEM2.0
DIC	MRB	21	2002	Cai et al., 2003
	MRB	20	2002	DLEM2.0
TN	MARB	1.1 (0.4-2.7)	1992	Alexander et al., 2008
	MARB	1.1+0.28	1986-1996	DLEM2.0

Next Steps

- GOM synthesis
 - Synthesize data output from sparrow, dlem, global news, and load models (some in hand)
 - By NOAA EDA's and GOM regions
 - Weak on estimates from Mexico portion
 - Synthesize literature (in hand)
- Related Paper
 - Fluxes of OC, N, P from sparrow models \rightarrow coastal waters
 - Predictions of OC sources from sparrow models → compare to measurement information (pigments, C isotopes, etc)